












































































macaque, as well as a similar incidence of irregular-
ities whose biological significance remains to be de-
termined. As in the macaque, however, this scheme
is provisional in many respects and is likely to be
subject to various revisions. Other recent reports have
used different partitioning schemes for distinguishing
visual areas, especially in the suprasylvian sulcus (e.g.,
Sherk, 1986), and much remains to be determined
about the connectivity of many of these areas.

In the rat, a recent study by Coogan and Burkhalter
(1990) has revealed consistent asymmetries in an-
terograde labeling patterns between visual areas, in
a manner strongly analogous to the hierarchical re-
lations we have described for primates. These findings
differ from an earlier report by Miller and Vogt (1984);
the difference may be attributed to the greater sen-
sitivity and resolution of the tracer used by Coogan
and Burkhalter (1990). The available evidence sug-
gests that there are at least 3 hierarchical levels in-
volving 5 visual areas in the rat. There are several
additional visual areas in the rat (Olavarria and Mon-
tero, 1984,1989) whose connectivities have yet to be
explored in detail, so it may be that further analysis
will reveal evidence for additional hierarchical stages.

In summary, a strategy based on laminar connec-
tivity patterns, particularly in the anterograde direc-
tion, provides a rational and objective basis for sys-
tematically assessing hierarchical relationships
throughout the mammalian neocortex. With appro-
priate refinements in the criteria for distinguishing
forward and feedback connections, we have shown
that this hierarchy encompasses the full extent of pri-
mate visual and somatosensory-motor cortex. How-
ever, much remains to be done in order to resolve
the modest number of apparent discrepancies and to
ascertain just how generally this hypothesis applies
across systems and species.

Intertwined Processing Streams in the Visual Cortex
One of the striking features of the visual hierarchy is
the extensive degree of parallel processing, as man-
ifested by the presence of many areas at each level in
the middle portion of the hierarchy (6 areas at level
5, 7 areas at level 7, and 5 areas at level 8 in Fig. 4).
This contrasts sharply with the presence of only 1 or
2 areas at most levels in the somatosensory-motor
hierarchy (Fig. 4 vs. Fig. 7).

The notion of parallel processing streams in the
visual system has received considerable attention dur-
ing the past decade and is the topic of several recent
reviews (e.g., Livingstone and Hubel, 1987b; Maun-
sell and Newsome, 1987; DeYoe and Van Essen, 1988;
Lennie et al., 1990). However, the highly distributed
connectivity that we have analyzed in the present study
raises questions that merit additional discussion. The
central issue we wish to address in the remainder of
this article is the relationship between the low-level
M and P streams that originate in the retina and the
high-level streams associated with areas in the tem-
poral and parietal lobes (Ungerleider and Mishkin,
1982; Desimone and Ungerleider, 1989).

If one considers only the most robust anatomical
pathways, there is striking evidence for segregated
streams over many hierarchical stages (Livingstone
and Hubel, 1984a,b, 1987a; DeYoe and Van Essen,
1988; Zeki and Shipp, 1989; Van Essen et al., 1991).
This is reflected in the color coding of areas in Figure
4. In brief, the M stream, indicated in shades of red,
includes the M layers of the LGN, layer 4B (and also
layer 4Ca) of VI, the cytochrome oxidase (CO)-en-
riched thick stripes of V2, and areas V3, MT, MST, and
probably also areas V4t and V3A. The M stream pro-
vides a notably heavy input into areas of the parietal
lobe, which are indicated in orange. The P stream
originates from P neurons in the retina and LGN (pur-
ple), which then splits into 2 distinct streams that are
relayed through layers 4C/3 and 4A of VI. They are
represented in the superficial layers of VI by the so-
called blob and interblob regions revealed by CO
histochemistry. The blobs and interblobs project, re-
spectively, to the thin stripes and interstripes of V2;
these 2 compartments, in turn, have segregated pro-
jections to V4. Both the P-B (blob-associated) stream,
shown in shades of violet and the P-I (interblob-as-
sociated) stream shown in shades of blue project
heavily (by way of V4) to areas in inferotemporal cor-
tex, which are indicated in shades of green.

Superimposed on this skeletal framework are nu-
merous additional pathways, many of which suggest
extensive cross talk at different stages of processing,
beginning even within VI. Some of this cross talk
appears to be mediated by intrinsic circuitry within a
single area. Malpeli et al. (1981) used reversible in-
activation of specific LGN layers to show that about
VS of the cells in VI can be activated independently
through either the M or the P pathway. Anatomical
substrates that might underlie this cross talk include
dendritic arbors that traverse more than 1 geniculate
afferent termination zone in layer 4C, robust projec-
tions from P-dominated layer 4QS to M-dominated
layer 4Ca, and projections from the M-dominated lay-
er 4B to the P-dominated superficial layers of VI (Fitz-
patrick et al., 1985; Lund, 1987, 1988). In VI, the
intrinsic connections of blobs and interblobs are
highly specific to regions of the same type (Living-
stone and Hubel, 1984b), but in V2, there appears to
be a greater degree of cross talk in the intrinsic con-
nections of different stripes (Livingstone and Hubel,
1984a; Rockland, 1985).

A second form of cross talk occurs in the ascending
connections between areas. At intermediate levels of
the hierarchy, areas MT, V3, V3A, and V4t all are dom-
inated by M inputs (from the thick stripes of V2 in all
cases, plus layer 4B of VI for MT and V3). However,
several of these areas receive substantial input from
other stripe compartments of V2. In particular, pro-
jections to MT occasionally arise from thin stripes as
well as thick stripes (DeYoe and Van Essen, 1985;
Shipp and Zeki, 1989). Also, the projections to V3,
V3A, and V4t arise from more than 1 stripe compart-
ment in V2 (Felleman et al., 1988). Area V4 is dom-
inated by P inputs in terms of the direct projections
from V2 thin stripes and interstripes, yet it also re-
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ceives major projections from each of the aforemen-
tioned M-dominated areas V3, MT, V3A, and V4t.

A comparable degree of cross talk persists in the
ascending projections leading to the parietal and in-
ferotemporal lobes. V4 projects most strongly to in-
ferotemporal areas, but it also has substantial projec-
tions to parietal cortex, directly to VIP and LIP and
indirectly through DP, MST, MST1, and MT. Likewise,
MT projects heavily to the parietal cortex (directly to
VIP and indirectly via MSTd and MST1), but it also
has indirect connections with inferotemporal areas
via FST and V4. There are also direct connections
between parietal and inferotemporal areas (LIP-PITv
and 7a-AITd), as well as indirect linkages by way of
FST, STP, and frontal lobe areas.

A third mode for interaction between streams is by
way of feedback pathways. For example, there is ev-
idence that feedback from areas V4 and MT may in-
clude multiple stripe compartments in V2, suggesting
greater cross talk in the descending than in the as-
cending direction (Zeki and Shipp, 1988,1989; Shipp
and Zeki, 1989). On the other hand, we have seen
cases in which the feedback from V3 and V4 to V2 is
more restricted than the reciprocal ascending path-
way (D. J. Felleman and D. C. Van Essen, unpublished
observations). The overall issue of cross talk in feed-
back pathways clearly deserves further investigation.

Taken as a whole, this anatomical description does
not support a rigid segregation of pathways all the
way from the magnocellular/parvocellular dichotomy
at the low end to the parietal/temporal dichotomy at
the high end. It remains to be seen to what degree
the divergence and convergence that we have dis-
cussed at the level of areas and compartments as a
whole persists when one examines the inputs and
outputs of single cells.

Single Neuron Connectivity
Thus far, we have concentrated on the connections
of entire areas or of layers and compartments within
areas, without addressing the issue of heterogeneity
among the individual neurons that make up a layer
or an area. Presumably, any given neuron, for exam-
ple, in V4, projects to far fewer areas than the total of
39 areas with which V4 is reported to be linked. In
the extreme, any single neuron might project, at most,
to 1 other cortical target area. Most of what we know
about this issue comes from a relatively small number
of double-retrograde-labeling studies in cats and
monkeys, in which tracers are injected into topo-
graphically corresponding portions of 2 different ar-
eas (cf. Kennedy and Bullier, 1985; Bullier and Ken-
nedy, 1987). In general, diis approach reveals a
significant number of doubly labeled cells, signifying
that individual neurons can indeed have collaterals
projecting to more than 1 area. Although the per-
centage of doubly labeled cells is relatively modest
(e.g., less than 10% of the labeled cells in the study
by Perkel et al., 1986), the interpretation of this num-
ber must take into account the likelihood that many,
if not most, singly labeled neurons had collaterals
that went to different areas that had not received a

tracer injection. The average number of target areas
per cortically projecting neuron could plausibly be
well under or well over 2. In the cat, there is evidence
that this number is greater for descending pathways
than for ascending pathways, and that some cells can
even contribute simultaneously to both directions, by
making both an ascending and a descending connec-
tion (Bullier et al., 1984; Bullier and Kennedy, 1987).

Functional Implications
We have concentrated in this study primarily on an
anatomical analysis that suggests 5 key principles of
primate cortical organization: (1) a large number of
visual areas, (2) highly distributed connectivity among
areas, (3) reciprocity of connections, (4) hierarchical
organization, and (5) distinct, yet intertwined, pro-
cessing streams. We now comment on what these
principles might signify for understanding the func-
tions of different visual areas.

Distributed Hierarchical Processing
The hierarchical scheme for visual cortex that we have
presented is grounded explicitly on anatomical cri-
teria. Whether each level of the hierarchy represents
a distinct stage of information processing is a separate
issue that must be addressed mainly by physiological
and behavioral approaches. One type of physiological
evidence in support of the hierarchy comes from com-
parisons of receptive field size, as conventionally plot-
ted using moving bars or edges (the "classical" re-
ceptive field). In VI, receptive fields are typically very
small, and they increase progressively at successive
stages of the hierarchy, ultimately approaching the
entire visual field in extent in some of the inferotem-
poral and parietal areas (cf. Van Essen, 1985, for ref-
erences). Ideally, one would like to know whether
these increases occur in stepwise fashion at each hi-
erarchical stage. However, such information is not
readily attainable, given that several factors contribute
to differences in receptive field size, including a strong
dependence on eccentricity, plus effects of anesthesia
and of interanimal variability.

Another important physiological measure con-
cerns the occurrence of emergent receptive field
properties at progressively higher levels of the hier-
archy. For example, area VI clearly represents a more
advanced stage of processing than the LGN by virtue
of the emergence or sharpening of selectivity for stim-
ulus orientation, spatial frequency, length, direction,
and binocular disparity (cf. Hubel and Wiesel, 1968;
Schiller et al., 1976a-c; Poggio and Fischer, 1977;
DeValois et al., 1982). Until recently, however, there
were few examples of this type to distinguish different
extrastriate areas from one another or even from VI.
That situation is now changing, and a few of the more
notable examples are worth explicit mention: (1) Many
cells in V2, but not in VI, are responsive to patterns
that elicit percepts of subjective contours in human
observers (Peterhans and von der Heydt, 1989; von
der Heydt and Peterhans, 1989). (2) Some cells in
MT, but not in VI, are selective for the motion of a
complex pattern rather than the individual oriented
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components (Movshon et al., 1986). (3) Some cells
in the inferotemporal cortex are selective for faces or
other complex patterns (Desimone et al., 1984; Baylis
et al., 1987; Perrett et al., 1987; Saito et al., 1987).
These and other examples support the notion that
higher stages of the cortical hierarchy represent more
advanced levels of processing. Much more evidence
is needed to test the generality of this hypothesis,
however.

The physiological properties discussed thus far
(increases in classical receptive field size and more
advanced receptive field selectivities) may largely re-
flect the contributions of ascending pathways and of
circuitry intrinsic to each area. The massive descend-
ing pathways that are so prominent anatomically may
subserve a different set of functions. One likely pos-
sibility is that descending connections contribute to
a set of modulatory surround influences, in which
stimuli well outside the classical receptive field can
dramatically influence the responses to stimuli within
the receptive field. Such modulatory effects have now
been demonstrated in the analysis of motion (Allman
et al., 1985; Saito et al., 1986), color (Zeki, 1983),
form (Desimone and Schein, 1987), and texture (Van
Essen et al., 1989). Another perspective is that de-
scending pathways may contribute to the modulation
of response properties by visual attention in area V4
(Moran and Desimone, 1985) and more generally, for
dynamic control of the routing of information through
each visual area (Anderson and Van Essen, 1987; Van
Essen and Anderson, 1990). However, there is no
strong basis at present for assigning any of these in-
teractions to a strictly corticocortical system as distinct
from pathways involving the pulvinar or other sub-
cortical structures. Finally, descending pathways may
play a critical role in memory processes (including
their formation, consolidation, and/or readout) at
higher cortical levels, particularly in the temporal lobe.

These examples illustrate how the existence of
feedback pathways can remain consistent with the
notion of hierarchical processing in the broad sense,
even though they rule out a strictly serial scheme.
The physiological properties of any given cortical
neuron will, in general, reflect many descending as
well as ascending influences. Nevertheless, the cell
may represent a well-defined hierarchical position in
terms of the types of information it represents ex-
plicitly and the way in which that information is used.

Functionality of Processing Streams
Why should the visual system contain processing
streams that, in some respects, remain distinct through
many successive stages of the hierarchy, yet show sig-
nificant anatomical cross talk at many (perhaps all)
stages? To address this question, it is useful to con-
sider the way in which visual information is encoded
at each hierarchical stage and how this information
may be used for perception and visually guided be-
havior.

Physiological distinctions between processing
streams are evident from the outset, in that M and P
channels differ markedly in how they represent in-

formation along spatial, temporal, and spectral di-
mensions (cf. Shapley and Perry, 1986; Lennie et al.,
1990). At any given eccentricity, P cells, on average,
have smaller receptive fields and higher spatial res-
olution, whereas M cells have higher temporal reso-
lution, higher contrast sensitivity, and a lower abso-
lute threshold. P cells tend to give sustained responses,
whereas M cells respond only transiently. P cells also
have spectrally opponent receptive fields, whereas M
cells carry only a nonlinear representation of spectral
contrast. These differences suggest an overall strategy
in which the M and P channels handle distinct, but
partially overlapping, portions of an information space
that includes the dimensions of space, time, and spec-
tral composition (Van Essen and Anderson, 1990).

In the visual cortex, each processing stream main-
tains a distinct profile of receptive field characteristics
(for reviews, see DeYoe and Van Essen, 1988; Living-
stone and Hubel, 1988). Most notably, the P-B stream
contains a high incidence of cells that are wavelength
selective, suggesting that it is particularly involved in
color perception. The M stream contains a high in-
cidence of cells selective for direction of motion and
for binocular disparity, suggesting that it is heavily
involved in the analysis of motion and depth. The P I
stream contains a high incidence of orientation-se-
lective cells, suggesting that it is involved in pattern
and form recognition. However, selectivity for these
low-level stimulus parameters is, in general, distrib-
uted across more than 1 processing stream. For ex-
ample, wavelength selectivity is common among neu-
rons in the PI stream as well as the P-B stream;
orientation selectivity and disparity selectivity are
common in both the PI stream and the M stream.
This physiological description is consistent with the
anatomical picture of streams that are distinct, yet
closely interlinked by cross talk at many levels.

Two types of reasoning support the notion that
such cross talk and intermixing of information may
reflect sensible design principles for the visual sys-
tem. They can best be illustrated in relation to a spe-
cific example, such as the way in which we analyze
an object that is moving across the visual field. First,
consider what sources of information are useful for
signaling object motion. If the object is moving rap-
idly, it will elicit responses mainly in M cells, because
of their sensitivity to transient changes. However, if
the object is moving very slowly, or if it is defined
mainly by a high spatial frequency pattern, the evoked
activity may be carried mainly by P cells. Hence, in
order to have a motion-analyzing system that operates
efficiently over a wide range of velocities, it would
make sense to draw information primarily from the M
channel, with the P channel playing an important, but
subsidiary, role. There is now direct physiological
evidence in support of this hypothesis (Maunsell et
al., 1990).

Once motion information has been extracted, there
are several distinct ways in which it can be used. The
most obvious is for computing the trajectory in which
the object is headed. In addition, velocity information
contributes to our perception of depth (by way of
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motion parallax), shape (by way of structure from
motion), and texture (by way of dynamic reflectance
changes, as in a rippling surface). Consequently, it
may be important for this information to be distrib-
uted both to parietal areas and to inferotemporal areas
in order to mediate different aspects of perception.

For both form and distance perception, a stronger
case can be made for a major role of both channels.
The cues for shape and for depth arise from a wide
range of spatial frequencies; moreover, form and dis-
tance perception are robust for static images, where
the P channel presumably dominates, and for moving
or transient images, where the M channel presumably
dominates. For the P channel to be inoperative in
these processes would imply that the high-resolution
information conveyed by 90% of LGN neurons is ir-
relevant to processes that are demonstrably capable
of hyperacuity levels of performance. For the M chan-
nel to be inoperative in either process would pose a
puzzle as to how we do so well at perceiving depth
and form at low contrast and also under scotopic con-
ditions, where M cells are much more sensitive than
P cells (Purpura et al., 1988). The effects of selectively
lesioning the M and P layers of the LGN on specific
behavioral tasks provide support for the notion that
M and P channels each contribute to multiple aspects
of perception (Schiller and Logothetis, 1990; Schiller
et al. 1990; Merigan et al., 1991).

In a more general sense, there appears to be a
complex, but orderly, relationship between low-level
sensory cues (e.g., orientation, velocity, disparity, and
spectral composition), high-level aspects of percep-
tion (e.g., perception of shape, surface qualities, and
spatial relationships), and the processing streams that
generate one from the other (DeYoe and Van Essen,
1988). The mapping is not 1:1, because many low-
level cues are represented in more than 1 stream, both
in the retina and at cortical levels, and because the
attributes that we perceive about objects in the world
can often be derived from more than 1 sensory cue.
The determination of which particular computational
strategies are associated with specific pathways, areas,
compartments, and processing substreams remains a
largely unresolved challenge for the future.

In the somatosensory cortex, there is physiological
evidence for parallel channels that are manifested at
the first hierarchical level by the partitioning of area
3b into modules dominated, respectively, by rapidly
adapting and slowly adapting afferents (Sur et al., 1981)
and by the preferential activation of area 3a by muscle
spindle afferents (cf. Merzenich et al., 1978; Kaas et
al., 1981). This functional segregation may persist at
higher levels in terms of the preferential activation
of area 1 by transient cutaneous stimulation and area
2 by sustained or deep pressure stimulation (Merze-
nich et al., 1978; E. Gardner, personal communica-
tion). At a still higher level, it has been suggested on
the basis of lesion studies as well as connectional data
that there may be a ventrally directed pathway, par-
ticularly involving SII, Ig, and Id, that is primarily
involved in tactile object recognition, and a dorsally
directed pathway, particularly involving areas 5 and

7b, that is primarily involved in somatomotor guid-
ance, spatial perception of the body, and other som-
esthetic spatial functions (Friedman et al., 1986).
Clearly, these observations suggest interesting anal-
ogies with the different processing streams in vision.
Comparisons across these systems may help to clarify
the nature of the tasks they must perform and the
computational strategies that provide efficient and
general solutions within the framework of the stereo-
typed architecture of the mammalian neocortex.

Notes
1. An accurate physical model of the macaque brain was a
valuable adjunct in transferring areal boundaries on to the
conical map. Two such enamel-painted, plaster-coated, sty-
rofoam models were available, one at 3 times life size and
the other at a scale of 9-fold. They were based on the outlines
of cortical layer 4 in a series of horizontal sections of the
right hemisphere of a different brain than that used to gen-
erate the cortical map in this figure. Boundaries of individual
cortical areas identified in the studies indicated in the text
and in Table 1 were marked onto the brain model, mainly
on the basis of the relationship to various geographical land-
marks. Once the physical model had been marked, the var-
ious areal boundaries were transposed to outlines of the
sections on which the model was based. The next step was
to transpose boundaries to sections of the brain from which
the cortical map was made. Although both the model and
the map were based on quasi-horizontal sections, they were
not precisely coplanar, and there were also modest individ-
ual differences in the exact size and configuration of various
gyri and sulci. Nonetheless, we were able to determine an
orderly mapping from one set of sections to the other and
to use this mapping to transpose areal boundaries from one
hemisphere to the other. The last step was a straightforward
transposition from individual sections to the corresponding
contours of the cortical map. The manually generated map,
complete with areal boundaries, was optically scanned and
used as a template for creating the color map with the CANVAS
program on a Macintosh II computer. Boundaries for each
area and for major cortical regions were traced over this
template to create separate objects that could be indepen-
dently colored, as in Figure 2, and also analyzed for surface
area (see Table 2).
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