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Individual variability of the human cerebral cortex is a source of both
fascination and frustration. The fascination arises because variability
in cortical structure and function may account for many aspects of our
unique personalities and cognitive capabilities. For neuroimagers, the
frustration arises because variability presents serious obstacles when
attempting to assign particular functional activation patterns to
specific cortical areas. Devlin and Poldrack cogently summarize many
of the key issues, and they make useful suggestions for linking function
to anatomy using a standardized stereotaxic space. This commentary
provides a broader perspective on the nature of individual variability
that has implications for the choice of strategies used to compensate for
variability. It also includes information about the actual differences
between various registration strategies and introduces a new strategy
for converting neuroimaging data to a standard stereotaxic space.
© 2007 Elsevier Inc. All rights reserved.

Devlin and Poldrack's central message is that neuroimagers
should relate their functional activation patterns to the underlying
anatomical structures and circuits as precisely as possible—even
though the complexity and variability of the human brain
(especially the cerebral cortex) make this a challenging endeavor.
While strongly endorsing this message, we consider it important to
place the discussion within a larger context of how and why
individual variability in cortical structure and function arises
during development. Devlin and Poldrack also recommend that the
field adopt a standard stereotaxic space in order to achieve greater
consistency in describing spatial localization. We endorse this
recommendation, but add several technical and practical com-
ments. We also illustrate how to make progress towards this
objective using a new method for bringing data originally analyzed
in different stereotaxic spaces into a consistent stereotaxic
representation. A final set of comments discuss databases that
provide efficient access to a growing body of neuroimaging data
reported in stereotaxic coordinates.
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Individual variability—what types and why?

It is useful to distinguish among four major types of individual
variability of the cerebral cortex. Devlin and Poldrack mention two of
them: (i) variability of cortical folding patterns per se (folding
variability) and (ii) variability in the location of cortical areas relative
to these folds (area-vs.-folding variability). Importantly, these two
types of variability are strikingly non-uniform across the cortical
sheet. Folding patterns are relatively consistent in some regions (e.g.,
the central sulcus) andmuchmore variable in other, regions, including
much of prefrontal and parieto-temporal cortex (Ono et al., 1990; Van
Essen, 2005). Similarly, the relationship between the boundaries of
cortical areas and gyral/sulcal landmarks is more consistent in regions
such as the central sulcus (White et al., 1997; Geyer et al., 1999) and
the olfactory sulcus (Öngur et al., 2003) than in parietal cortex and
dorsolateral prefrontal gyrus (Amunts et al., 1999). Also, there are
major species differences, as the relationship between cortical areas
and folds is much more consistent in the macaque than in humans
(Lewis andVan Essen, 2000a). The remaining two types of variability
relate more directly to cortical macro-circuitry and may be more
fundamental from a developmental, functional, and mechanistic
perspective. (iii) Areal size variability. Human cerebral cortex
contains a complex mosaic of perhaps 100–200 distinct cortical areas
(Van Essen, 2004). Each of these areas shows marked individual
variability in its size (surface area)—up to threefold variability for
well-defined areas such as V1 (Andrews et al., 1997; Amunts et al.,
2000; Van Essen et al., 1984). (iv)Connectional variability. Studies in
nonhuman primates indicate that each cortical area is interconnected
with many other areas (often 10 or more) by pathways that vary
greatly in strength (Felleman and Van Essen, 1991; Lewis and Van
Essen, 2000b). The degree of individual variability in each of
thousands of specific cortico-cortical pathways is difficult to quantify
but is likely to be considerable.

Variability in macro-circuitry (areal size variability and
connection variability combined) is important in two respects.
One is that differences in cortical macro-circuitry may account for
many individual differences in cognitive, perceptual, emotional,
and motor capabilities—i.e., in our unique personalities and
behavioral capabilities. The other arises in connection with the
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hypothesis that during development cortical folding is driven by
mechanical tension along long-distance cortico-cortical connec-
tions (Van Essen, 1997). By this hypothesis, the overall wiring
diagram leads to a specific pattern of cortical folding in each
individual, and individual differences in cortical macro-circuitry
can largely account for both folding variability and area-folding
variability.

Tension-based cortical folding can readily account for both the
consistencies and the inconsistencies of folding patterns and their
relationship to cortical areas. Consistency of folding and consistent
function-folding relationships should tend to occur in regions
dominated by a few large areas and prominent cortico-cortical
pathways. For example, the relatively consistent folding of the
central sulcus may arise because this region is dominated by large
primary somatosensory and motor areas; variability in the exact
location and shape of the central sulcus may reflect individual
differences in size and/or connectivity of these areas. In contrast,
highly variable folding and inconsistent area-vs.-folding relation-
ships should tend to occur in ‘balkanized’ regions containing a
mosaic of many small areas and/or greater variability in connection
patterns. Hence, this simple (and still unproven) hypothesis has
great explanatory power.

Stereotaxic spaces—how different are they?

Devlin and Poldrack recommend the adoption of ‘MNI space’
rather than ‘T&T space’, because the latter has several well-
Fig. 1. Quantitative maps of the differences between stereotaxic spaces and regis
corresponding points on average fiducial surfaces in MNI space (FLIRTalgorithm, M
algorithm), displayed on the T&T average fiducial surface. Each average fiducial
Essen, 2005). (C, D) Lateral and medial views of an analogous difference map f
template. A more comprehensive set of comparisons is available in the SumsDB d
edu/sums/directory.do?id=6604123&dir_name=COMPARE_STEREOTAXIC_SPA
known limitations. As they note, registration to MNI space can be
done using several different templates (MNI305, MNI152, or the
Colin individual brain) and a variety of registration algorithms,
including transformations that are linear (e.g., FLIRT and
MRITOTAL affine transformations), nonlinear but low-dimen-
sional (e.g., SPM99, SPM2, SPM5), and high-dimensional
nonlinear (e.g., Mohlberg et al., 2003). T&T space is defined
by the drawings in the Talairach and Tournoux (1988) atlas. As
with MNI space, registration to T&T space can occur via multiple
templates and multiple registration algorithms. For example,
AFNI registration (Cox, 1996) can be done using the original
T&T piecewise linear algorithm to a set of landmark points,
whereas the AIR algorithm (Woods et al., 1998) uses nonlinear
registration to a population-average volume resized to match the
T&T atlas dimensions. (An affine registration algorithm –

@auto_tlrc – is now available in AFNI as well.) Other stereotaxic
spaces are in current use, such as 711-2B space (Ojemann et al.,
1997; Buckner et al., 2004), which is similar but not identical in
size to the T&T atlas and which includes multiple templates (711-
2B, 711-2C, 711-2L, 711-2Y) that represent different age ranges
or age combinations.

How different are the various registration algorithms in
actuality? To illustrate the magnitude and spatial pattern of
differences between various spaces and registration algorithms,
we have used the PALS-B12 (Population-average, Surface- and
Landmark-based) human cortical atlas, which includes average
fiducial surfaces for the left and right hemispheres in each of 6
tration processes. (A, B) Lateral and medial view of the distance between
NI152 template) and T&Tspace (AFNI implementation of piecewise linear
surface is based on the shapes of 12 normal individuals hemispheres (Van
or the FLIRT and SPM2 average fiducial surfaces, both using the MNI152
atabase and can be viewed online using WebCaret (see http://sumsdb.wustl.
CES).

http://sumsdb.wustl.edu/sums/directory.do?id=6604123&dir_name=COMPARE_STEREOTAXIC_SPACES
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widely used stereotaxic spaces (Van Essen, 2005). The distance
between corresponding points for two atlas surfaces, one in MNI
space (FLIRT algorithm) and the other in T&T space (AFNI
algorithm) is displayed on lateral and medial views of the AFNI
average fiducial surface in Figs. 1A and B. The difference
magnitudes are painted on the surface; additionally, the direction of
the differences is shown by vectors for a sparse subset of points.
The difference between corresponding nodes in the two atlas
surfaces is 5.5 mm on average and approaches 1 cm at the dorsal
and ventral limits of the hemisphere. Figs. 1C and D show the
differences between FLIRT (linear) and SPM2 (nonlinear) versions
of MNI space. The difference map is generally smaller (average
3.1 mm) but still exceeds 5 mm in dorso-medial cortex.
Importantly, the PALS-B12 atlas surfaces can be used not only
to visualize differences, but also to convert stereotaxic coordinates
from one space to another (see below).

The differences among the various ways of registering to MNI
space, while modest, are large enough that they should not be
ignored. An important distinction is between linear (FLIRT,
MRITOTAL) and nonlinear (SPM99, SPM2) algorithms. In
principle, nonlinear registration should achieve lower overall
variance than linear registration by virtue of having more degrees
of freedom. Indeed, we have confirmed that the average 3D
variability for the PALS-B12 atlas is slightly lower when
calculated for the SPM2 fiducial surfaces compared to the FLIRT
fiducial surfaces. On the other hand, nonlinear registration
represents a two-edged sword when making comparisons across
datasets that have been registered by different algorithms.

As Devlin and Poldrack note, the probabilistic architectonic
volumes generated by the Zilles laboratory (e.g., Amunts et al.,
1999) are a valuable resource for estimating which cortical areas are
associated with fMRI activations and other experimental data
Fig. 2. (A, B) Data from 312 studies (8559 foci) mapped to the PALS-B12 atlas.
appropriate PALS-B12 atlas surface. Since each focus preserves its original d
transformation from many starting spaces into a single output space. Only foci wi
excludes a number of published activations centered in the cerebellum. (C) Foci f
probabilistic map of area 44 (Amunts et al., 1999) registered by the linear method.
(FIND; Hamilton and Van Horn, 2006) and BREDE (Nielsen, 2003) datab
id=6529195&dir_name=STEREOTAXIC_FOCI.
obtained in various neuroimaging studies. Importantly, both linear
and high-dimensional nonlinear (HDNL) versions of these
probabilistic architectonic maps have been generated, in both cases
using the Colin individual brain in MNI space as the template
(Amunts et al., 2004; Eickhoff et al., 2005). Not surprisingly, the
HDNL maps show tighter clustering of the probabilistic distribu-
tion, but they also differ from the linear maps in terms of the center
of mass coordinates for each architectonic area. This raises the
question of how to minimize bias when comparing population-
average fMRI activation patterns to either version of the
probabilistic architectonic maps. When making comparisons to
the HDNL architectonic maps, systematic biases would in principle
be minimized by registering individual subjects in fMRI studies
using the same HDNL algorithm (Mohlberg et al., 2003) and the
same Colin individual target. However, this is currently not feasible
using existing fMRI analysis packages, and in any event it would
introduce a different set of biases and complications associated with
registration to an individual subject rather than to a population-
average. An alternative is to compare a nonlinear transformation of
fMRI data (e.g., using SPM2 and the MNI152 population-average
target) to the HDNL-registered architectonic maps. However, this
would be satisfactory only if the two nonlinear methods result in a
similar spatial pattern of deformations. This is unlikely to be the
case in general, given the differences in templates (individual Colin
brain vs. population-average template) and in the dimensionality of
the registration algorithms. In general, unintended biases may be
introduced when comparing datasets registered by different
algorithms to different templates, and it is difficult to estimate the
magnitude and regional pattern of such biases without direct
empirical evaluation. Consequently, we suggest that linear
registration of both architectonic and fMRI data provide the best
‘apples-to-apples’ comparisons currently available even though this
Using a one-step mapping option in Caret, each focus was projected to the
istance from the atlas surface, their new coordinates reflect an accurate
thin 10 mm from the atlas cerebral surface are displayed in this figure; this
rom a set of tasks related to imitation and action observation overlaid on a
Many of the data were obtained from the Functional Imaging Net Database
ases. Data are accessible at http://sumsdb.wustl.edu/sums/directory.do?
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approach does not minimize variance within either the fMRI or the
architectonic data.

Surface-based registration

Devlin and Poldrack comment briefly on the relative merits of
surface-based vs. volume-based methods for registering data
mapped to the cerebral cortex. Because surface-based registration
of individual subjects to an atlas respects the topology of the
cortical sheet, it should in principle be able to outperform volume-
based registration in compensating for individual variability.
Several recent studies provide empirical data in support of this
hypothesis (Fischl et al., 1999; Desai et al., 2005; Van Essen,
2005; Van Essen et al., 2006; Argall et al., 2006), though
additional critical comparisons between approaches are much to
be desired. Hence, surface-based approaches will likely become
an increasingly important strategy for reducing variability,
representing the spatial complexity of activation patterns, and
achieving more precise functional localization in neuroimaging
studies of the future. Such gains will also be applicable to
probabilistic architectonic maps discussed in the preceding
paragraph once it becomes feasible to generate surface recon-
structions from scans of postmortem brains. As with volume-
based registration discussed above, the choice of template (target)
and registration algorithm can have a substantial effect on the
degree to which surface-based registration compensates for
normal variability. Hence, whatever registration method is used
in any given study, Devlin and Poldrack appropriately urge that
the precise target space, template, and registration algorithm
should be specified when reporting neuroimaging results.

Accessing coordinate-based neuroimaging data

Given the richness and complexity of human neuroimaging data
represented in thousands of published studies, it is increasingly
important to make objective, quantitative comparisons of results
obtained in different studies. For example, consider how useful it
would be if any investigator could quickly and reliably determine
which brain regions are reported to be activated or deactivated by
any given experimental task (e.g., working memory) and could
immediately link to the online publications that underlie these
findings. Equally useful would be queries that immediately reveal
the spectrum of tasks that led to activation or deactivation of any
given brain region (e.g., the olfactory sulcus), again with direct
links to the relevant publications. Databases represent the natural
substrate for providing this information. Functional activations and
deactivations encoded by their stereotaxic coordinates represent a
type of low-hanging fruit that is especially well suited for such
analyses. A modest but growing fraction of data from the
neuroimaging literature is currently accessible in databases that
include stereotaxic coordinates as a substrate for spatial localiza-
tion. The BrainMap database (http://www.brainmap.org/) provides
access to almost 1000 studies (∼34,000 coordinate locations, using
T&T space as the standard). An alternative source is the SumsDB
database (http://sumsdb.wustl.edu/sums/), which provides immedi-
ate online visualization of data (using WebCaret software) and
offers additional capabilities for database searches and making
comparisons with probabilistic architectonic maps and with
complex fMRI activation patterns (Van Essen et al., 2005). Figs.
2A and B show stereotaxic coordinates for over 8500 activa-
tion foci (from 312 published studies) originally reported in 8
stereotaxic spaces but projected via the appropriate average
fiducial surfaces onto the PALS atlas surface (left and right flat
maps and FLIRT average fiducial surfaces). Notably, the overall
distribution of activation centers is far from uniform. This may
reflect a combination of technical factors plus tendencies to
emphasize some types of task over others in the set of studies
selected.

These data are accessible online (see Fig. 2 legend) and can be:
(i) searched using coordinates and/or text-based criteria, (ii) viewed
online via WebCaret, and (iii) downloaded for additional analyses,
including comparisons with many other types of atlas data. For
example, Fig. 2C shows a subset of foci from nine studies
involving a variety of tasks related to imitation and action
observation overlaid on a probabilistic map of area 44 (green/
blue patch). Although the coloring of foci Fig. 2 does not
distinguish among the different task subtypes, this information is
available in the actual dataset. In addition, direct links to the online
publications provide immediate access to extensive additional
information about each study.

Returning to the central theme of this commentary, neuroima-
gers should remain mindful of the daunting complexity of attaining
a deep understanding of brain function. Simply describing hot
spots of task-related activations is only a beginning rather than an
end-point in this process. Analyses that are accurately linked to the
underlying anatomical circuitry in each individual will have
improved prospects for contributing to a deeper understanding.
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